Extensions 1→N→G→Q→1 with N=C2 and Q=C5×C22.D4

Direct product G=N×Q with N=C2 and Q=C5×C22.D4
dρLabelID
C10×C22.D4160C10xC2^2.D4320,1526


Non-split extensions G=N.Q with N=C2 and Q=C5×C22.D4
extensionφ:Q→Aut NdρLabelID
C2.1(C5×C22.D4) = C5×C23.34D4central extension (φ=1)160C2.1(C5xC2^2.D4)320,882
C2.2(C5×C22.D4) = C5×C23.8Q8central extension (φ=1)160C2.2(C5xC2^2.D4)320,886
C2.3(C5×C22.D4) = C5×C23.23D4central extension (φ=1)160C2.3(C5xC2^2.D4)320,887
C2.4(C5×C22.D4) = C5×C23.63C23central extension (φ=1)320C2.4(C5xC2^2.D4)320,888
C2.5(C5×C22.D4) = C5×C24.C22central extension (φ=1)160C2.5(C5xC2^2.D4)320,889
C2.6(C5×C22.D4) = C5×C23.10D4central stem extension (φ=1)160C2.6(C5xC2^2.D4)320,895
C2.7(C5×C22.D4) = C5×C23.11D4central stem extension (φ=1)160C2.7(C5xC2^2.D4)320,898
C2.8(C5×C22.D4) = C5×C23.81C23central stem extension (φ=1)320C2.8(C5xC2^2.D4)320,899
C2.9(C5×C22.D4) = C5×C23.4Q8central stem extension (φ=1)160C2.9(C5xC2^2.D4)320,900
C2.10(C5×C22.D4) = C5×C23.83C23central stem extension (φ=1)320C2.10(C5xC2^2.D4)320,901
C2.11(C5×C22.D4) = C5×C22.D8central stem extension (φ=1)160C2.11(C5xC2^2.D4)320,981
C2.12(C5×C22.D4) = C5×C23.46D4central stem extension (φ=1)160C2.12(C5xC2^2.D4)320,982
C2.13(C5×C22.D4) = C5×C23.19D4central stem extension (φ=1)160C2.13(C5xC2^2.D4)320,983
C2.14(C5×C22.D4) = C5×C23.47D4central stem extension (φ=1)160C2.14(C5xC2^2.D4)320,984
C2.15(C5×C22.D4) = C5×C23.48D4central stem extension (φ=1)160C2.15(C5xC2^2.D4)320,985
C2.16(C5×C22.D4) = C5×C23.20D4central stem extension (φ=1)160C2.16(C5xC2^2.D4)320,986

׿
×
𝔽